Heterotrophic denitrification vs. autotrophic anammox – quantifying collateral effects on the oceanic carbon cycle

نویسندگان

  • W. Koeve
  • P. Kähler
چکیده

The conversion of fixed nitrogen to N2 in suboxic waters is estimated to contribute roughly a third to total oceanic losses of fixed nitrogen and is hence understood to be of major importance to global oceanic production and, therefore, to the role of the ocean as a sink of atmospheric CO2. At present heterotrophic denitrification and autotrophic anammox are considered the dominant sinks of fixed nitrogen. Recently, it has been suggested that the trophic nature of pelagic N2-production may have additional, “collateral” effects on the carbon cycle, where heterotrophic denitrification provides a shallow source of CO2 and autotrophic anammox a shallow sink. Here, we analyse the stoichiometries of nitrogen and associated carbon conversions in marine oxygen minimum zones (OMZ) focusing on heterotrophic denitrification, autotrophic anammox, and dissimilatory nitrate reduction to nitrite and ammonium in order to test this hypothesis quantitatively. For open ocean OMZs the combined effects of these processes turn out to be clearly heterotrophic, even with high shares of the autotrophic anammox reaction in total N2-production and including various combinations of dissimilatory processes which provide the substrates to anammox. In such systems, the degree of heterotrophy (1CO2:1N2), varying between 1.7 and 6.5, is a function of the efficiency of nitrogen conversion. On the contrary, in systems like the Black Sea, where suboxic Nconversions are supported by diffusive fluxes of NH+4 originating from neighbouring waters with sulphate reduction, much lower values of 1CO2:1N2 can be found. However, accounting for concomitant diffusive fluxes of CO2, the ratio approaches higher values similar to those computed for open ocean OMZs. Based on this analysis, we question the significance of collateral effects concerning the trophic nature of suboxic N-conversions on the marine carbon cycle. Correspondence to: W. Koeve ([email protected])

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surveying Denitrification Efficacy in Up-Flow Packed Bed Bioreactor Operated under Heterotrophic Condition Using Autotrophic Bacteria

Introduction: The biological denitrification process is an interesting cost-effective technique to remove nitrate from water supplies. Acetic acid can be used as a carbon source in this process, but its consumption rate is a critical issue and, in some cases, it is quite different from stoichiometric constants. The current study aimed to investigate the nitrate removal in an up-flow packed bed ...

متن کامل

WST 50.10 J07 corr

In wastewater treatment plants with anaerobic sludge digestion, 15–20% of the nitrogen load is recirculated to the main stream with the return liquors from dewatering. Separate treatment of this ammonium-rich digester supernatant significantly reduces the nitrogen load of the activated sludge system. Two biological applications are considered for nitrogen elimination: (i) classical autotrophic ...

متن کامل

Effect of heterotrophic growth on autotrophic nitrogen removal in a granular sludge reactor.

This study deals with the influence of heterotrophic growth on autotrophic nitrogen removal from wastewater in a granular sludge reactor. A mathematical model was set-up including autotrophic and heterotrophic growth and decay in the granules from a partial nitritation-anammox process. A distinction between heterotrophic bacteria was made based on the electron acceptor (dissolved oxygen, nitrit...

متن کامل

Partial Nitritation of Nitrogen Rich Refinery Wastewater (sour Water) with Different Ic/n Molar Ratios

EXTENDED ABSTRACT For nitrogen rich streams, conventional biological treatment based on nitrification and denitrification usually lacks of efficiency and requires considerable amounts of an external carbon source to be supplied; on the other hand, physical-chemical processes are characterized by high operating costs. The possible application of partial nitritation SHARON (Single reactor for Hig...

متن کامل

Oxygen at Nanomolar Levels Reversibly Suppresses Process Rates and Gene Expression in Anammox and Denitrification in the Oxygen Minimum Zone off Northern Chile

UNLABELLED A major percentage (20 to 40%) of global marine fixed-nitrogen loss occurs in oxygen minimum zones (OMZs). Concentrations of O2 and the sensitivity of the anaerobic N2-producing processes of anammox and denitrification determine where this loss occurs. We studied experimentally how O2 at nanomolar levels affects anammox and denitrification rates and the transcription of nitrogen cycl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010